Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 10(7): 292, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32551213

RESUMO

The aims of this work were to screen isolated bacteria with a dual capacity: to inhibit Fusarium solani and to promote plant growth. Also, volatile compounds that would be responsible for that effect were identified. Seventy bacterial strains from the air, agricultural soils, hydrocarbons-contaminated soils, and extremophile soils were tested. The former were identified by Matrix-Assisted Laser Desorption/Ionization-time of flight mass spectrometry and 16S rDNA sequencing. The plant growth-promoting bacteria (PGPB) and their capability for phosphate solubilization, siderophores production, and indole production were determined. Twenty isolates from Bacillus and Pseudomonas genera inhibited the mycelial growth up to 40% in direct assays. Eleven isolates significantly inhibited mycelial growth in 18-24% via volatile emissions. Volatile compounds related to antifungal activity or stress response include ketones, sesquiterpenes, monoterpenoids, alkanes, and fatty acids. Our results support the potential of these PGPB to act as biocontrol agents against fungal pathogens via volatile emissions.

2.
Appl Microbiol Biotechnol ; 104(14): 6101-6113, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32440707

RESUMO

Microbial physiology is an essential characteristic to be considered in the research and industrial use of microorganisms. Conventionally, the study of microbial physiology has been limited to carrying out qualitative and quantitative analysis of the role of individual components in global cell behaviour at a specific time and under certain growth conditions. In this framework, groups of observable cell physiological variables that remain over time define the physiological states. Recently, with advances in omics techniques, it has been possible to demonstrate that microbial physiology is a dynamic process and that, even with low variations in environmental culture conditions, physiological changes in the cell are provoked. However, the changes cannot be detected at a macroscopic level, and it is not possible to observe these changes in real time. As an alternative to solve this inconvenience, dielectric spectroscopy has been used as a complementary technique to monitor on-line cell physiology variations to avoid long waiting times during measurements. In this review, we discuss the state-of-the-art application of dielectric spectroscopy to unravel the physiological state of microorganisms, its current state, prospects and limitations during fermentation processes. Key points • Summary of the state of the art of several issues of dielectric spectroscopy. • Discussion of correlation among dielectric properties and cell physiological states. • View of the potential use of dielectric spectroscopy in monitoring bioprocesses.


Assuntos
Fenômenos Fisiológicos Celulares , Espectroscopia Dielétrica , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Reatores Biológicos , Membrana Celular/metabolismo , Fungos/citologia , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Leveduras/citologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
3.
World J Microbiol Biotechnol ; 31(2): 359-69, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25566818

RESUMO

The process of cocoa fermentation is a very important step for the generation or aromatic compounds, which are attributable to the metabolism of the microorganisms involved. There are some reports about this process and the identification of microorganisms; however, there are no reports identifying the yeasts involved in a Mexican cocoa fermentation process using molecular biology techniques, including restricted fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). The aim of this study was to identify the main yeast species associated with Mexican cocoa fermentations employing culture-dependent and -independent techniques achieving two samplings with a 1 year time difference at the same site. Isolation of the microorganisms was performed in situ. Molecular identification of yeast isolates was achieved by RFLP analysis and rDNA sequencing. Total DNA from the microorganisms on the cocoa beans was utilized for the DGGE analysis. Bands from the DGGE gels were excised and sequenced. Nineteen isolated yeasts were identified (al specie level), three of which had never before been associated with cocoa fermentations worldwide. The detected predominant yeast varied from one technique to another. Hanseniaspora sp. resulted dominant in DGGE however Saccharomyces cerevisiae was the principal isolated species. In conclusion, the culture-dependent and -independent techniques complement each other showing differences in the main yeasts involved in spontaneous cocoa fermentation, probably due to the physiological states of the viable but non culturable yeasts. Furthermore important differences between the species detected in the two samplings were detected.


Assuntos
Cacau/microbiologia , Técnicas de Tipagem Micológica/métodos , Leveduras/classificação , Leveduras/isolamento & purificação , DNA Fúngico/análise , DNA Ribossômico/análise , Fermentação , Microbiologia de Alimentos , México , Especificidade da Espécie , Leveduras/genética
4.
Antonie Van Leeuwenhoek ; 100(4): 497-506, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21681584

RESUMO

The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Leveduras/isolamento & purificação , Leveduras/metabolismo , Agave/metabolismo , DNA Fúngico/genética , Etanol/metabolismo , Fermentação , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Polimorfismo de Fragmento de Restrição , RNA Ribossômico/genética , Leveduras/classificação , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...